当前位置: 首页» 机构设置» 科研部门» 栽培与采后技术研究室» 设施栽培

设施栽培

 

 

一、主要研究领域
      蔬菜非生物逆境适应与调控的分子机制,蔬菜高品质栽培原理与技术,设施蔬菜智能化生产技术,农机农艺融合与轻简化栽培技术。

 

二、承担的主要项目

  1. 国家自然科学基金面上项目:“CsGPA1与CsCOR413PM互作调控黄瓜低温抗性的机制”(No. 32072650,2021-2024)。
  2. 国家自然科学基金面上项目:“CsGG3.2介导BR-MAPK信号轴调控黄瓜低温胁迫的分子机制”(No. 32072652,2021-2024)。
  3. 国家自然科学基金面上项目:“转录因子CsBPC2调控黄瓜盐胁迫抗性的分子机理研究”(No. 31972480,2020-2023)。
  4. 国家自然科学基金面上项目:“黄瓜/南瓜嫁接亲和性基因的筛选与鉴定”(No. 3177110903,2018-2021)。
  5. 国家自然科学基金青年项目:“CsRBOHA调控黄瓜低温胁迫记忆的分子机理定”(No. 3210180373,2022-2024)。
  6. 国家大宗蔬菜产业技术体系:温室蔬菜栽培岗位(No. CARS-25,2016-2020)。
  7. 国家特色蔬菜产业技术体系:产地环境综合治理岗位(2017-2020)。
  8. 中国农业科学院科技创新工程:蔬菜栽培与生理创新团队(CAAS-ASTIP-IVFCAAS)。
  9. 国家重点研发计划课题:“黄淮海暧温区露地蔬菜化肥农药减施技术模式建立与示范”(No. 2018YFD0201207,2018-2020)。
  10. 国家重点研发计划子课题:“环渤海暖温带(山东省莱州莘县)设施蔬菜化肥农药减施技术模式建立与示范推广”(No. 2018YFD0201207,2018-2020)。
  11. 国家重点研发计划子课题:“土壤质地和产量目标协同的设施蔬菜水分高效利用技术研究示范”(No. 2018YFD0201207,2018-2020)。

 

三、近5年主要成果

成果1:设施蔬菜低温弱光诱抗增产关键技术创新与应用
      从G蛋白、油菜素内酯和氨基酸诱抗与硝铵竞争吸收与转运和微量元素调控等不同层次初步解析了果菜适应低温的调控机制,研制出能够减轻设施果菜低温伤害的叶面诱抗剂、根系诱抗剂等系列产品,注册了“诱抗赢丰”商标并进行产品开发,在多地示范结果表明,该产品对多种蔬菜作物耐冷性和产量提升效果显著。

成果2:设施果菜秸秆原位还田关键技术创新与应用
      研发出设施果菜秸秆原位还田技术,应用该项技术可以完全利用设施果菜秸秆,减少资源浪费,减轻环境污染,提高土壤肥力,蔬菜产量增加5%以上,每亩增收节支800元以上。发布农业行业标准《设施果菜秸秆原位还田技术规程》(NY/Y 3850-2020),授权国家发明专利4项,发表相关论文3篇,为设施果菜秸秆综合利用、减轻环境污染提供了理论依据和技术支持。

 

四、发明专利

  1. 发明专利:一种黄瓜嫁接方法,ZL201810913436.8
  2. 发明专利:一种黄瓜生长调节剂和日光温室黄瓜种植方法,ZL201810338531.X
  3. 发明专利:一种蔬菜育苗调节剂和蔬菜壮苗的育苗方法,ZL201810339033.7
  4. 发明专利:一种蔬菜生长调节剂和日光温室蔬菜叶面喷施方法,ZL201810339035.6
  5. 发明专利:G蛋白α亚基在调控种子萌发、幼苗生长及植株抗低温性中的应用,ZL201811525835.3
  6. 发明专利:便于组装与拆卸的集光伏发电和沼气生产于一体日光温室,ZL201822257717.0
  7. 发明专利:一种日光温室番茄残株原位还田的方法及其应用,ZL201711333904.6
  8. 发明专利:一种日光温室黄瓜残株还田的方法及其应用,ZL201711333863.0
  9. 发明专利:一种番茄栽培方法,ZL201510174112.3

 

五、发表文章

  1. Miao, L., Li, Q., Sun, T. S., Chai, S., Wang, C., Bai, L., Sun M.T., & Yu, X*. (2021). Sugars promote graft union development in the heterograft of cucumber onto pumpkin. Horticulture Research, 8(1), 1-17. 
  2. Miao, L., Li, S. Z., Shi, A. K., Li, Y. S., He, C. X., Yan, Y., & Yu, X*. (2021). Genome-wide analysis of the AINTEGUMENTA-like (AIL) transcription factor gene family in pumpkin (Cucurbita moschata Duch.) and CmoANT1. 2 response in graft union healing. Plant Physiology and Biochemistry, 162, 706-715.
  3. Liu, Y., Bai, L., Sun, M., Wang, J., Li, S., Miao, L., Yu, X* & Li, Y*. (2021). Adaptation of cucumber seedlings to low temperature stress by reducing nitrate to ammonium during it’s transportation. BMC Plant Biology, 21(1), 1-16.
  4. Yan, Y., Sun, M., Li, Y., Wang, J., He, C*., & Yu, X*. (2020). The CsGPA1-CsAQPs module is essential for salt tolerance of cucumber seedlings. Plant Cell Reports, 39(10), 1301-1316. 
  5. Anwar, A., Di, Q., Yan, Y., He, C., Li, Y., & Yu, X*. (2019). Exogenous 24-epibrassinolide alleviates the detrimental effects of suboptimal root zone temperature in cucumber seedlings. Archives of Agronomy and Soil Science, 65(14), 1927-1940.
  6. Miao, L., Li, S., Bai, L., Anwar, A., Li, Y., He, C., & Yu, X*. (2019). Effect of grafting methods on physiological change of graft union formation in cucumber grafted onto bottle gourd rootstock. Scientia Horticulturae, 244, 249-256.
  7. Anwar, A., Li, Y., He, C., Li, Y* & Yu, X*. (2019). 24-Epibrassinolide promotes NO3− and NH4+  ion flux rate and NRT1 gene expression in cucumber under suboptimal root zone temperature. BMC Plant Biology, 19(1), 1-15.
  8. Li, S., Miao, L., Huang, B., Gao, L., He, C., Yan, Y., Yu X* & Li, Y*. (2019). Genome-wide identification and characterization of cucumber BPC transcription factors and their responses to abiotic stresses and exogenous phytohormones. International Journal of Molecular Sciences, 20(20), 5048. 
  9. Miao, L., Di, Q., Sun, T., Li, Y., Duan, Y., Wang, J. & Yu, X*. (2019). Integrated metabolome and transcriptome analysis provide insights into the effects of grafting on fruit flavor of cucumber with different rootstocks. International Journal of Molecular Sciences, 20(14), 3592. 
  10. Miao, L., Qin, X., Gao, L., Li, Q., Li, S., He, C. & Yu, X*. (2019). Selection of reference genes for quantitative real-time PCR analysis in cucumber (Cucumis sativus L.), pumpkin (Cucurbita moschata Duch.) and cucumber–pumpkin grafted plants. PeerJ, 7, e6536.
  11. Anwar, A., Yan, Y., Liu, Y., Li, Y*., & Yu, X*. (2018). 5-Aminolevulinic acid improves nutrient uptake and endogenous hormone accumulation, enhancing low-temperature stress tolerance in cucumbers. International Journal of Molecular Sciences, 19(11), 3379. 
  12. Anwar, A., Bai, L., Miao, L., Liu, Y., Li, S., Yu, X*., & Li, Y*. (2018). 24-Epibrassinolide ameliorates endogenous hormone levels to enhance low-temperature stress tolerance in cucumber seedlings. International Journal of Molecular Sciences, 19(9), 2497. 
  13. Bai, L., Liu, Y., Mu, Y., Anwar, A., He, C., Yan, Y., & Li Y*., Yu, X*. (2018). Heterotrimeric G-protein γ subunit CsGG3. 2 positively regulates the expression of CBF genes and chilling tolerance in cucumber. Frontiers in Plant Science, 9, 488. 
  14. Mu, Y., Liu, Y., Bai, L., Li, S., He, C., Yan, Y., Yu, X* & Li, Y*. (2017). Cucumber CsBPCs regulate the expression of CsABI3 during seed germination. Frontiers in Plant Science, 8, 459. 
  15. Li, Y., Li, C., Bai, L., He, C., & Yu, X*. (2016). MicroRNA and target gene responses to salt stress in grafted cucumber seedlings. Acta physiologiae plantarum, 38(2), 42. 

 

 

 

 

关于我们

联系我们

地址:北京市海淀区中关村南大街12号

邮编:100081

电子邮箱:ivfcaas@caas.cn

传真:010—62146160

电话:010—82109520